Display Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 122032A – SYH-LY

Product specification

Version: 1

DOCUMENT REVISION HISTORY

Version	DATE	DESCRIPTION	CHANGED BY
00	May-29-2006 Sep-5-2006	First issue	
01	Sep-5-2006	Change print	

CONTENTS

1. Functions & Features	1
2. Mechanical specifications	1
3. Block diagram	1
4. Dimensional Outline	2
5. Pin description	3
6. Maximum absolute limit	4
7. Electrical characteristics	5
8. Timing Characteristics	6
9. Control and display command	7
10. Backlight characteristics	8
11.Electro-Optical characteristics	8
12. Quality Specifications	9~17

1. FUNCTIONS & FEATURES

1.1. Format : 122x32dots

1.2. LCD mode : STN / Positive transflective mode / Yellow-green

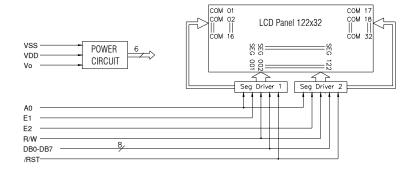
1.3. Viewing direction : 6 o'clock

1.4. Driving scheme : 1/32 Duty cycle, 1/5 Bias

 $\begin{array}{lll} \text{1.5. Power supply voltage}(V_{DD}) & : 5.0 \text{ Volt (typ.)} \\ \text{1.6. LCD driving voltage} & : 4.1 \text{Volt (typ.)} \\ \text{1.7. Operation temp} & : -20 \sim 70^{\circ}\text{C} \\ \text{1.8. Storage temp} & : -30 \sim 80^{\circ}\text{C} \end{array}$

1.9. Backlight : LED, Lightbox, Yellow-green

2. MECHANICAL SPECIFICATIONS


2.1. Module size : 80.0 x 36.0 x 13.5 mm(max.)

 2.2. Viewing area
 : 60.5x 18.5 mm

 2.3. Dot pitch
 : 0.44 x 0.49 mm

 2.4. Dot size
 : 0.40 x 0.45 mm

3. BLOCK DIAGRAM

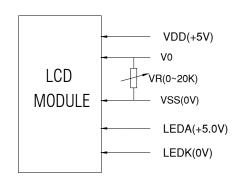


Figure 1. Block diagram

4. DIMENSIONAL OUTLINE

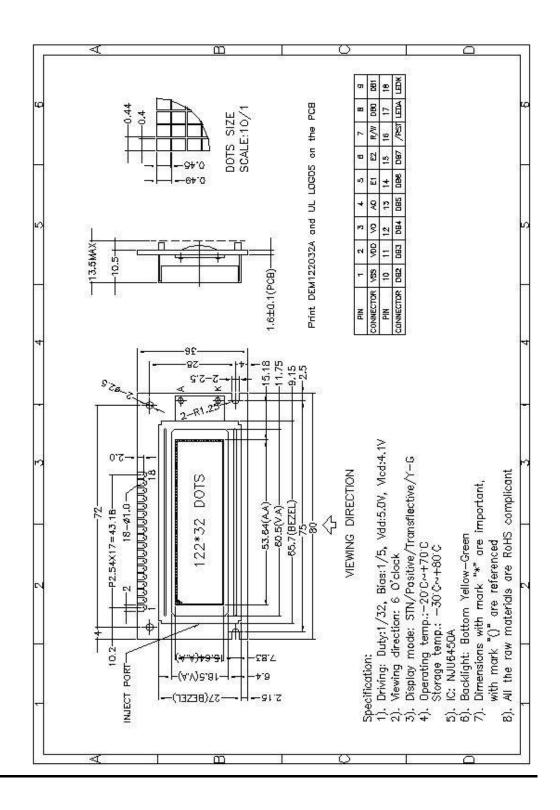


Figure 2. Dimensional outline

5. PIN DESCRIPTION

No.	Symbol	Function
1	VSS	GND
2	VDD	Power supply
3	VO	Supply voltage for LCD drive
4	A0	Register selection. (H: Data register L: Instruction register)
5	E1	Enable signal for IC1(left half of the panel)
6	E2	Enable signal for IC2(right half of the panel)
7	R/W	Read /write selection. (H: Read L: write)
8~15	DB0~DB7	Data bus lines
16	/RST	Reset signal(The rise of the signal is for active and keep RET='h')
17	LED+(A)	Power supply for backlight(+)
18	LED- (K)	Power supply for backlight(-)

6. MAXIMUM ABSOUTE LIMIT

(For IC)

Parameter	Symbol	Condition	Unit
Supply voltage (1)	Vss	−8.0 ~ +0.3	V
Supply voltage (2)	V5	−16.5 ~ +0.3	V
Supply voltage (3)	V1, V4, V2, V3	V5 ~ +0.3	V
Input voltage	VIN	Vss - 0.3 ~ +0.3	V
Output voltage	V0	Vss - 0.3 ~ +0.3	V
Allowable loss	PD	250	mW
Operating temperature	Topr	−30 ~ +85	°C
Storage temperature	Tstg	− 65 ~ +150	°C
Soldering temperature/time	Tsolder	260 / 10 (at lead)	°C / Sec

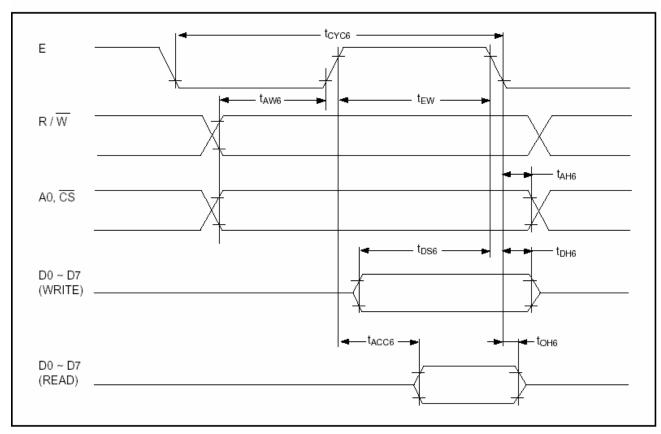
Notes:

- 1. All voltages are based on VDD = 0V.
- 2. The following condition must always hold true with voltages V1, V2, V3, V4 and V5: $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$
- 3. The LSI may be permanently damaged if used with any value in excess of the absolute maximum ratings. During normal operation, the LSI should preferably be used within the specified electrical characteristics. Failure to meet them can cause the LSI to malfunction or lose its reliability.
- 4. Generally, flat package LSIs may have moisture resistance lowered when solder dipped. In mounting LSIs on a board, it is recommended to use a method which is least unlikely to give thermal stress on the package resin.

7. ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Cond	ition	Min	Тур	Max	Unit	Applicable Pin
Operating	Recommended	Vss	**	1	-5.5	-5.0	-4.5	V	Vss
voltage (1)	Allowable	V 33		I	-7.0	_	-2.4	·	V 55
	Recommended	V5			-13.0	_	-3.5	v	V5
Operating	Allowable	٧٥			-13.0	_	_	v	*10
voltage (2)	Allowable	V1, V2			$0.6 \times V5$	_	Vdd	V	V1, V2
	Allowable	V3, V4			V5	_	$0.4 \times V5$	V	V3, V4
High level in	nut voltage	VIHT			Vss + 2.0	_	VDD	v	*2
High-level input voltage		VIHC			$0.2 \times Vss$	_	VDD	V	*3
Low-level input voltage		VILT		Vss	_	Vss + 0.8	V	*2	
Low-level in	out voltage	VILC			Vss	_	$0.8 \times Vss$	V	*3
		Voht	VOHT IOH = -3.0 mA		Vss + 2.4	_	_		*4
High-level ou	utput voltage	Vohc1	IOH = -2.0 mA	Vss + 2.4	_	_	V	*5	
			IoH = -120 μA	$0.2 \times Vss$	_	_		OSC2	
			IOL = 3.0 mA	_	_	Vss + 0.4		*4	
Low-level ou	tput voltage	Volc1	IOL = 2.0 mA	_	_	Vss + 0.4	V	*5	
		VOLC2	IoL = 120 μA	_	_	$0.8 \times Vss$		OSC2	
Input leakag	e current	Ι⊔			-1.0	_	1.0	μΑ	*6
Output leaka	ige current	ILO			-3.0	_	3.0	μΑ	*7
LCD driver C	M register	Ron	Ta = 25°C	V5 = -5.0V	_	5.0	7.5	kΩ	SEG0~79 *11
LCD anver C	DIN TESISTOF	KON	Ta = 25°C	V5 = -3.5V	_	10.0	50.0	K22	COM0~15
Static curren	t dissipation	IDDQ	CS = CL = VDD		_	0.05	1.0	μΑ	VDD
			During diaplay	fcL = 2 kHz	_	2.0	5.0		VDD *12
Dumamia aum	rant dissination	IDD (1)	During display V5 = –5.0V	$R_f = 1 M\Omega$	_	9.5	15.0	μΑ	*13
Dynamic cur	rent dissipation		V5 = -5.0V	fcL = 18 kHz	_	5.0	10.0		*14
		IDD (2)	During access t	_	300	500	μΑ	*8	
Input pin cap	acitance	CIN	Ta = 25°C	Ta = 25°C f = 1 MHz		5.0	8.0	рF	All input pins
Oscillation fr	eguenov	fosc	$R_f = 1.0 M\Omega \pm 2\%$	15	18	21	kHz	*9	
Oscillation if	equency	1030	$R_f = 1.0 M\Omega \pm 2\%$	11	16	21	KHZ	9	
Reset time		tr			1.0	_	1000	μs	RES

Notes:


- Operation over a wide range of voltages is guaranteed, except where a sudden voltage change occurs during access.
- *2. Pins A0, D0 D7, E (RD), R/W (WR) and CS
- *3. Pins CL, FR, M/S and RES
- *4. Pins D0 D7
- *5. Pin FR
- *6. Pins A0, E (RD), R/W (WR), CS, CL and RES
- Applicable when pins D0 D7 and FR are at high impedance.
- *8. This value is current consumption when a vertical stripe pattern is written at tcvc. Current consumption during

- access is nearly proportionate to access frequency (tcyc). Only Top (1) is consumed while no access is made.
- Relationship between the oscillation frequency, frame and Rr (see Figures 5.1 – 5.3).
- *10. Operating voltage ranges of Vss and V5 (see Figure 5.4).
- *11. Resistance with a voltage of 0.1V applied between the output pin (SEG, COM) and each power pin (V1, V2, V3, V4). It is specified within the operating voltage range.
- *12, 13, 14. Current consumed by each discrete IC, not including LCD panel and wiring capacitances.
- *12. Applicable to SED1520FAA and SED1521FAA
- *13. Applicable to SED1520Foa
- *14. Applicable to SED1521Foa

8. TIMING CHARACTERISTICS $Ta = -210 \text{ to } 75^{\circ}\text{C}, VSS = -5.0V \pm 10\%$

Parameter	Symbol	Signal	Condition	Min	Тур	Max	Unit
System cycle time	tCYC6 *1	A0, CS		1000	_	_	ns
Address setup time	tAW6	R/W		20	_	_	ns
Address hold time	tAH6	PV/VV		10	_	_	ns
Data setup time	tDS6			80	_	_	ns
Data hold time	tDH6	D0 D7		10	_	_	ns
Output disable time	tOH6	D0 – D7	CL = 100 pF	10	_	60	ns
Access time	tACC6		CL = 100 pF	_	_	90	ns
Enable pulse width: Read	45144	Е		100	_	_	ns
Enable pulse width: Write	tEW			80	_	_	ns

- *1 toxcs indicates the cycle time during which $\overline{\text{CS}} \cdot \text{E} = \text{`H''}$. It does not mean the cycle time of signal E.
- *2 Each of the values where Vss = -3.0V is about 200% of that where Vss = -5.0V (i.e., the listed value).
- *3 The rise or fall time of input signals should be less than 15 ns.

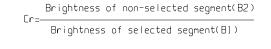
System bus read/write II (68-family MPU)

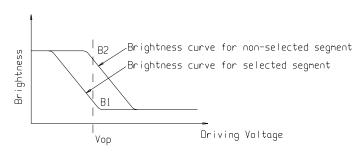
9. CONTROL AND DISPLAY INSTRUCTION

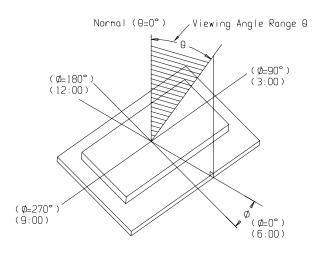
	Command	Command					Function									
	Command	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function			
(1)	Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0/1	Turns all display on or off, independently of display RAM data or internal status.			
													ON OFF (Power-saving mode with static drive on)*			
(2)	Display Start Line	0	1	0	1	1	0	А	Disp ddre				Specifies RAM line corresponding to uppermost line (COM0) of display.			
(3)	Set Page Address	0	1	0	1	0	1	1	1	0	Page	(0-3)	Sets display RAM page in page address registe			
(4)	Set Column (Segment) Address	0	1	0	0	(Colur	mn A	ddre	ss (()–79)	Sets display RAM column address in column address register.			
(5)	Read Status	0	0	1	Busy	ADC	FF	ESET	0	0	0	0	Reads the following status:			
					В	A	ON/OFF	RES					BUSY 1: Internal operation 0: Ready ADC 1: CW output (forward) 0: CCW output (reverse) ON/OFF1: Display off 0: Display on			
													ON/OFF1: Display off 0: Display on RESET 1: Being reset 0: Normal			
(6)	Write Display Data	1	1	0			٧	Vrite	Data	a			Writes data from data Display RAM locatio bus into display RAM. whose address has bee			
(7)	Read Display Data	1	0	1			F	Read	Dat	а			Reads data from display RAM onto data bus. Preset is accessed. Af access, the column a dress is incremented by			
(8)	Select ADC	0	1	0	1	0	1	0	0	0	0	0/1	Used to invert relationship of assignment between display RAM column addresses and segment driver outputs.			
													0: CW output (forward) 1: CCW output (reverse)			
(9)	Static Drive ON/OFF	0	1	0	1	0	1	0	0	1	0	0/1	Selects normal display or static driving operation			
													Static drive (power-saving mode) Normal driving			
(10)	Select Duty	0	1	0	1	0	1	0	1	0	0	0/1	Selects LCD cell driving duty			
													1: 1/32 0: 1/16			
(11)	Read Modify Write	0	1	0	1	1	1	0	0	0	0	0	Increments column address counter by 1 when display data is written. (This is not done when data is read.)			
(12)	End	0	1	0	1	1	1	0	1	1	1	0	Clears read modify write mode.			
(13)	Reset	0	1	0	1	1	1	0	0	0	1	0	Sets display start line register on the first line. Also sets column address counter and page address counter to 0.			

^{*} With display off (command (1)), static drive going on (9) invokes power-saving mode.

10. BACK LIGHT CHARACTERISTICS


LCD Module with bottom Backlight **ELECTRICAL RATINGS**


Ta = 25°C


Item	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage	VF	IF=100mA	3.9	4.1	4.3	V
Reverse Current	IR	VR=8V			100	uA
Luminous Intensity (With LCD dots off)	Lv	IF=100mA		70.5		Cd/m ²
Wave length	λρ	IF=100mA		572		nm
Color	Yellow-green					
External use at pin 17/18		5Volt with a	approx.	140mA	(typ.)	

$\frac{\textbf{11. ELECTRO-OPTICAL CHARACTERISTICS}}{(\text{Vop} = 4.1\text{V}, \text{Ta} = 25^{\circ}\text{C})}$

Item	Symbol	Condition	Min	Тур	Max	Unit
Operating Voltage		Ta = -20°C	4.4	4.6	4.8	
	Vop	$Ta = 25^{\circ}C$	3.9	4.1	4.3	V
		Ta = 70°C	3.4	3.6	3.8	
Dognongo timo	Tr	Ta = 25°C		185		ms
Response time	Tf	1a – 23 C		200		ms
Contrast	Cr	$Ta = 25^{\circ}C$		4		
	θ		-40		+40	deg
Viewing angle range	Ф	Cr≥2	-40		+40	deg

12. PRECAUTION FOR USING LCD/LCM

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

General Precautions:

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting DISPLAY.
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- 7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal adheres to skin or clothes, wash it off immediately with soap and water.

Static Electricity Precautions:

- 1. CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.
- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

Soldering Precautions:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: 280°C+10°C
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

Operation Precautions:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 7. For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.

Limited Warranty

DISPLAY LCDs and modules are not consumer products, but may be incorporated by our customers into consumer products or components thereof, DISPLAY DISPLAY does not warrant that its LCDs and components are fit for any such particular purpose.

- 1. The liability of DISPLAY is limited to repair or replacement on the terms set forth below. DISPLAY will not be responsible for any subsequent or consequential events or injury or damage to any personnel or user including third party personnel and/or user. Unless otherwise agreed in writing between DISPLAY and the customer, DISPLAY will only replace or repair any of its LCD which is found defective electrically or visually when inspected in accordance with DISPLAY general LCD inspection standard . (Copies available on request)
- 2. No warranty can be granted if any of the precautions state in handling liquid crystal display above has been disregarded. Broken glass, scratches on polarizer mechanical damages as well as defects that are caused accelerated environment tests are excluded from warranty.
- 3. In returning the LCD/LCM, they must be properly packaged; there should be detailed description of the failures or defect.